Missense mRNA is a messenger RNA bearing one or more mutated that yield with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is and an altered amino acid sequence is coded for.
Missense mRNAs may be detected as a result of two different types of point mutations - spontaneous mutations and induced mutations. Spontaneous mutations occur during the DNA replication process where a non-complementary nucleotide is deposited by the DNA polymerase in the extension phase. The consecutive round of replication would result in a point mutation. If the resulting mRNA codon is one that changes the amino acid, a missense mRNA would be detected. A hypergeometric distribution study involving DNA polymerase β replication errors in the APC gene revealed 282 possible substitutions that could result in missense mutations. When the APC mRNA was analyzed in the mutational spectrum, it showed 3 sites where the frequency of substitutions were high.
Induced mutations caused by can give rise to missense mutations. Nucleoside analogues such as 2-aminopurine and 5-bromouracil can insert in place of A and T respectively. Ionizing radiation like and Gamma ray can Deamination cytosine to uracil.
Missense mRNAs may be applied synthetically in forward and reverse genetic screens used to interrogate the genome. Site-directed mutagenesis is a technique often employed to create knock-in and knock-out models that express missense mRNAs. For example, in knock-in studies, human orthologs are identified in model organisms to introduce missense mutations, or a human gene with a substitution mutation is integrated into the genome of the model organism. The subsequent loss-of-function or gain-of-function are measured to model genetic diseases and discover novel drugs. While homologous recombination has been widely used to generate single-base substitutions, novel technologies that co-inject gRNA and hCas9 mRNA of the CRISPR/Cas9 system, in conjunction with single-strand oligodeoxynucleotide (ssODN) donor sequences have shown efficiency in generating point mutations in the genome.
|
|